Friday, 18 September 2015

Diverse Permutation

A. Diverse Permutation
Permutation p is an ordered set of integers p1,   p2,   ...,   pn, consisting of n distinct positive integers not larger than n. We'll denote as nthe length of permutation p1,   p2,   ...,   pn.
Your task is to find such permutation p of length n, that the group of numbers |p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn| has exactly k distinct elements.
Input
The single line of the input contains two space-separated positive integers nk (1 ≤ k < n ≤ 105).
Output
Print n integers forming the permutation. If there are multiple answers, print any of them.
Sample test(s)
input
3 2
output
1 3 2
input
3 1
output
1 2 3
input
5 2
output
1 3 2 4 5
Ads by OffersWizardAd Options
Note
By |x| we denote the absolute value of number x

**************************************code****************
#include<iostream>
using namespace std;
typedef long long int lli;

 int main()
  {
  int n;
  cin>>n;
  int k;
   cin>>k;
  int start=1;
  int end=n;
   int arr[n+10];
    int f=0;
      for(int i=1;i<=k;i++)
       {
      // cout<<" k is "<<k<<endl;
        if(f==0)
         {
          // cout<<" fill start"<<endl;
          arr[i]=start;
          start++;
           f=1;
 }
 else
 {
// cout<<" fill end"<<endl;
  f=0;
  arr[i]=end;
  end--;
   
 }
}
// cout<<"start"<<start<<endl;
if(k%2==1)
for(int i=k+1;i<=n;i++)
 {
  arr[i]=start;
  start++;
 }
 else
 {
  for(int i=k+1;i<=n;i++)
 {
  arr[i]=end;
    end--;
 }
 }
 
 for(int i=1;i<=n;i++)
  cout<<arr[i]<<" ";
   cout<<endl;
  }

Building Permutation

C. Building Permutation

Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation p1,  p2,  ...,  pn.
You have a sequence of integers a1, a2, ..., an. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.
Input
The first line contains integer n (1 ≤ n ≤ 3·105) — the size of the sought permutation. The second line contains n integers a1, a2, ..., an( - 109 ≤ ai ≤ 109).
Output
Print a single number — the minimum number of moves.
Please, do not use the %lld specifier to read or write 64-bit integers in ะก++. It is preferred to use the cin, cout streams or the %I64dspecifier.
Sample test(s)
input
2
3 0
output
2
input
3
-1 -1 2
output
6
Ads by OffersWizardAd Options
Note
In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).
In the second sample you need 6 moves to build permutation (1, 3, 2)

******************************code***********************************
#include<iostream>
using namespace std;
typedef long long int lli;
 lli arr[10000000];
 #include<bits/stdc++.h>
 int main()
  {
   int n;
    cin>>n;
    for(int i=0;i<n;i++)
     {
      cin>>arr[i];
 }
 
 sort(arr,arr+n);
 
lli ans=0;
for(int i=0;i<n;i++)
 {
  ans+=abs(i+1-arr[i]);
 }
    cout<<ans<<endl;
    return 0;
  }